
List of Unix Commands:
Note: Some of these commands may have extensions/options. Use the man command
to read more about them.

Commands What it does

bg job Puts job in the background.

cat file1 Displays the content of file1.

cd dir Changes directory from the current working directory to dir.

chmod (option) file1 Lets you change the read, write, and execute permissions on file1.

clear Clears the terminal.

cp file1 file2 Creates a copy of file1 called file2.

cp file1 dir1 Copies file1 into dir1.

cp -r dir1 dir2 Copies dir1 into dir2

echo string Prints string on the terminal.

fg job Puts job in the foreground.

grep pattern file1 Searches file1 for pattern, and displays all lines that contain pattern.

head (option) (num) file1 Prints the first 10 lines of file1, by default. If you want to set the
number of lines this prints, you need to do: head -n num file1 and it
will print the first num lines of file1.
E.g. head file1 will print the first 10 lines of file1.
E.g. head -n 3 file1 will print the first 3 lines of file1.

history Prints a list of all past commands typed in the current terminal
session.

less file1 Displays the contents of file1. Less is a similar to more, but which
allows backward and forward movement in the file. Furthermore, less
doesn’t have to read the entire input file before starting, so it is faster
than some text editors for large input files.

ln target link This creates a hard link between target and link.

ln -s target link This creates a soft link between target and link.

ls Lists all files and directories in the current directory.

ls - R Lists files in the sub-directories, as well

ls - a Lists hidden files as well

ls - al Lists files and directories with detailed information like permissions,
size, owner, etc.

jobs Gives you a list of jobs, each of which is associated with a job
number.

man command Gives help information on command.

mkdir directory Creates a new directory in the current working directory or at the
specified path.

more file1 Displays the contents of file1.

mv file1 file2 Moves file1 into file2. If file2 doesn’t exist, then it renames file1 to
file2.

ps Prints the current running processes.

pwd Prints the absolute path of the current working directory.

rm file1 Deletes file1.

rmdir directory1 Deletes directory1.

sort file1 This rearranges the lines in file1 so that they are sorted, numerically
and alphabetically. By default, the rules for sorting are:

1. Lines starting with a number will appear before lines starting
with a letter.

2. Lines starting with a letter that appears earlier in the alphabet
will appear before lines starting with a letter that appears later
in the alphabet.

3. If two or more lines, of different lengths, share the first x
number of letters, then sort will print the lines from shortest
length to longest.

4. Lines starting with a lowercase letter will appear
before lines starting with the same letter in uppercase, if they
have the same length.

Note: sort does not affect the original file in any way.

E.g. Suppose we have a file called file1 that contains these lines
my name is rick
My name is rick
1
Then, if we do sort file1, we get the following:
1
my name is rick
My name is rick

E.g. Suppose we have a file called file2 that contains these lines
my name is rick lan
My name is rick
1
Then, if we do sort file2, we get the following:
1
My name is rick
my name is rick lan

stat file1/dir1 Gives detailed information about file1/dir1

tail (option) (num) file1 Prints the last 10 lines of file1, by default. If you want to set the
number of lines this prints, you need to do: last -n num file1 and it will
print the last num lines of file1.
E.g. last file1 will print the last 10 lines of file1.
E.g. last -n 3 file1 will print the last 3 lines of file1

uniq file1 Prints out the contents of file1 but removes all the duplicates in
adjacent lines.

E.g. Suppose we have a file called file1 and it contains the following:
cat
cat
cat
dog
dog
Then, if we do uniq file1, it would print
cat
dog

E.g. Suppose we have a file called file2 and it contains the following:
cat
dog
cat
dog
cat
Then, if we do uniq file2, it would print
cat
dog
cat
dog
cat

vi file1 Creates a file called file1.

wc file1 Prints the number of lines, words, and characters file1 has.

E.g. Suppose we have a file called file1 and it contains the following:
cat
dog
cat
dog
cat
Then, if we do wc file1, we get:
5 5 20 file1
The first 5 means there are 5 lines in file1.
The second 5 means there are 5 words in file1.
The 20 means there are 20 characters in file1. Note that because
there is a space after each line, there are 20 characters.

Redirection:
1. Standard Input (stdin):

- The file descriptor for stdin is 0.
- Denoted as <.
- E.g. cat < file1 works the same as cat file1.

2. Standard Output (stdout):
- The file descriptor for stdout is 1.
- Denoted as either > or >>.
- The general form is command > file or command >> file, where

command is any command that outputs to stdout.
- Note: If file was not created before, then this will create it for you.
- > will redirect the output to a file. This will overwrite whatever was in the

file before.
- >> will append the output to a file. This will add the output to the end of

whatever was in the file before.
- E.g. Suppose we have 2 files, file1 and file2.

Suppose the contents of file1 is 12345 and the contents of file2 is abcde.
If we do cat file1 >> file2 and then do cat file2, the output of cat file2 is:
abcde
12345
If we do cat file2 > file1 and then do cat file1, the output of cat file1 is:
abcde
12345

3. Standard Error (stderr):
- The file descriptor for stderr is 2.
- Denoted as 2> or 2>>.
- The general form is command error 2> file or command error 2>> file.
- Note: If file was not created before, then this will create it for you.
- 2> will redirect the error message into the file.
- 2>> will append the error message into the file.
- This is useful for shell scripting because you usually do not want error

messages cluttering up the normal program output.
- E.g. Suppose that there is no file in the current working directory called x.

Suppose we do cat x 2> file1. This will overwrite the contents of file1 with
the error message.

- E.g. Suppose that there is no file in the current working directory called x.
Suppose we do cat x 2>> file1. This will append the contents of file1 with
the error message.

